Indexed by:
Abstract:
Designing efficient adsorbents for the deep removal of refractory dibenzothiophene (DBT) from fuel oil is vital for addressing environmental issues such as acid rain. Herein, zinc gluconate and urea-derived porous carbons SF-ZnNC-T (T represents the carbonization temperature) were synthesized without solvents. Through a temperature-controlled process of "melting the zinc gluconate and urea mixture, forming H-bonded polymers, and carbonizing the polymers," the optimal carbon, SF-ZnNC-900, was obtained with a large surface area (2280 m2 g-1), highly dispersed Zn sites, and hierarchical pore structures. Consequently, SF-ZnNC-900 demonstrated significantly higher DBT adsorption capacity of 43.2 mg S g1, compared to just 4.3 mg S g-1 for the precursor. It also demonstrated good reusability, fast adsorption rate, and the ability for ultra-deep desulfurization. The superior DBT adsorption performance resulted from the evaporation of residual zinc species, which generated abundant mesopores that facilitated DBT transformation, as well as the formation of Zn-Nx sites that strengthened the host-guest interaction (DE--1.466 eV). The solvent-free synthesized highly dispersed Zn-doped carbon shows great potential for producing sulfur-free fuel oil and for designing metal-loaded carbon adsorbents. (c) 2024 Institute of Process Engineering, Chinese Academy of Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Keyword:
Reprint 's Address:
Email:
Source :
GREEN ENERGY & ENVIRONMENT
ISSN: 2096-2797
Year: 2025
Issue: 5
Volume: 10
Page: 994-1001
1 0 . 7 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: