• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

Li, Wei (Li, Wei.) [1] | Ming, Yang (Ming, Yang.) [2] | Yang, Libing (Yang, Libing.) [3] | Ni, Yimeng (Ni, Yimeng.) [4] | Chen, Yu (Chen, Yu.) [5] | Xu, Weidong (Xu, Weidong.) [6] | Li, Lefei (Li, Lefei.) [7] | Zheng, Chan (Zheng, Chan.) [8] | Lin, Wanyang (Lin, Wanyang.) [9]

Indexed by:

EI

Abstract:

Hydrogels with conductive properties hold significant promise in the realm of flexible electronics, owing to their pliability, outstanding conductivity, and diverse functionalities. Nevertheless, the majority of conductive hydrogels are prone to being brittle and easily damaged; as such, they are not adapt to cold environments, which seriously hinders their practical applications. Therefore, hydrogels that possess both conductivity and anti-freezing, as well as moisturizing, capabilities have garnered considerable interest, and these hydrogels can work stably in harsh environments. Phytic acid (PA), which mainly exists in plant seeds, is a kind of natural compound widely existing in nature that can be recycled; it provides electrical conductivity and anti-freezing to hydrogels. Here, a highly conductive hydrogel with excellent anti-freezing and moisturizing capabilities was prepared by incorporating PA into a polyacrylamide/gelatin hydrogel. The incorporation of PA endowed the hydrogel with an excellent conductivity of 5.8 S·cm−1. In addition, robust hydrogen bonding was formed between water and phytic acid molecules, and the hydrogel demonstrated remarkable anti-freezing and water retention. On this basis, hydrogels can be used for human winter sports sensing and low-temperature environmental alarm devices to provide faster rescue. This study provides a novel method for the development of hydrogels with low-temperature stability, and provides a revelation for the application of anti-freezing hydrogels in icy and snowy environments. © 2025 by the authors.

Keyword:

Flexible electronics Motion sensors

Community:

  • [ 1 ] [Li, Wei]College of Materials Science and Engineering, Fujian University of Technology, Fuzhou; 350118, China
  • [ 2 ] [Ming, Yang]College of Materials Science and Engineering, Fujian University of Technology, Fuzhou; 350118, China
  • [ 3 ] [Yang, Libing]College of Materials Science and Engineering, Fujian University of Technology, Fuzhou; 350118, China
  • [ 4 ] [Yang, Libing]College of Chemical Engineering, Fuzhou University, Fuzhou; 350116, China
  • [ 5 ] [Ni, Yimeng]College of Chemical Engineering, Fuzhou University, Fuzhou; 350116, China
  • [ 6 ] [Chen, Yu]College of Materials Science and Engineering, Fujian University of Technology, Fuzhou; 350118, China
  • [ 7 ] [Xu, Weidong]College of Materials Science and Engineering, Fujian University of Technology, Fuzhou; 350118, China
  • [ 8 ] [Li, Lefei]College of Materials Science and Engineering, Fujian University of Technology, Fuzhou; 350118, China
  • [ 9 ] [Zheng, Chan]College of Materials Science and Engineering, Fujian University of Technology, Fuzhou; 350118, China
  • [ 10 ] [Lin, Wanyang]School of Information and Smart Transportation, Fujian Chuanzheng Communications College, Fuzhou; 350007, China

Reprint 's Address:

  • [li, wei]college of materials science and engineering, fujian university of technology, fuzhou; 350118, china

Show more details

Related Keywords:

Related Article:

Source :

Polymers

Year: 2025

Issue: 10

Volume: 17

4 . 7 0 0

JCR@2023

CAS Journal Grade:3

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 0

Online/Total:111/10147567
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1