Indexed by:
Abstract:
Predator-prey interactions are among the most common and crucial ecological phenomena in nature. Over the course of long-term evolution, prey populations have developed various anti-predation strategies to cope with the threat of predators, with population dispersal being one of the most common strategies. In traditional ecological models, the prey population is typically constrained by direct predation. However, an increasing body of empirical evidence suggests that the fear effect from the predator significantly alters the physiological behavior of prey, leading to a decrease in reproduction rate and an increase in mortality rate. In this paper, we investigate a predator-prey system incorporating asymmetric dispersal and the fear effect, which influences the birth and death rates of the prey species. We rigorously establish the existence and local stability of equilibrium points, derive sufficient conditions for global stability, and prove the occurrence of a transcritical bifurcation at the boundary equilibrium. Our analysis reveals an optimal dispersal rate that maximizes prey population density; beyond this threshold, increased dispersal drives both populations to extinction. Furthermore, the fear effect and its maximum cost exhibit significant negative impacts on predator abundance, though they do not alter the equilibrium stability or existence. These findings provide critical insights for designing habitat corridors in endangered species conservation and underscore the pivotal role of prey dispersal in shaping population dynamics.
Keyword:
Reprint 's Address:
Version:
Source :
SYMMETRY-BASEL
Year: 2025
Issue: 3
Volume: 17
2 . 2 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: