• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

Huang, Zhanchao (Huang, Zhanchao.) [1] | Hong, Wenjun (Hong, Wenjun.) [2] | Su, Hua (Su, Hua.) [3]

Indexed by:

CPCI-S EI Scopus

Abstract:

The recognition of sea ice is of great significance for reflecting climate change and ensuring the safety of ship navigation. Recently, many deep learning based methods have been proposed and applied to segment and recognize sea ice regions. However, the diverse scales of sea ice areas, the zigzag and fine edge contours, and the difficulty in distinguishing different types of sea ice pose challenges to existing sea ice recognition models. In this paper, a Global-Local Detail Guided Transformer (GDGT) method is proposed for sea ice recognition in optical remote sensing images. In GDGT, a globallocal feature fusiont mechanism is designed to fuse global structural correlation features and local spatial detail features. Furthermore, a detail-guided decoder is developed to retain more high-resolution detail information during feature reconstruction for improving the performance of sea ice recognition. Experiments on the produced sea ice dataset demonstrated the effectiveness and advancement of GDGT.

Keyword:

deep learning image segmentation sea ice recognition Transformer model

Community:

  • [ 1 ] [Huang, Zhanchao]Fuzhou Univ, Acad Digital China, Key Lab Spatial Data Min & Informat Sharing, Minist Educ, Fuzhou 350108, Peoples R China
  • [ 2 ] [Hong, Wenjun]Fuzhou Univ, Acad Digital China, Key Lab Spatial Data Min & Informat Sharing, Minist Educ, Fuzhou 350108, Peoples R China
  • [ 3 ] [Su, Hua]Fuzhou Univ, Acad Digital China, Key Lab Spatial Data Min & Informat Sharing, Minist Educ, Fuzhou 350108, Peoples R China

Reprint 's Address:

  • [Huang, Zhanchao]Fuzhou Univ, Acad Digital China, Key Lab Spatial Data Min & Informat Sharing, Minist Educ, Fuzhou 350108, Peoples R China

Email:

Show more details

Related Keywords:

Source :

IGARSS 2024-2024 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, IGARSS 2024

ISSN: 2153-6996

Year: 2024

Page: 1768-1772

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 0

Online/Total:39/10092337
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1