Indexed by:
Abstract:
The recognition of sea ice is of great significance for reflecting climate change and ensuring the safety of ship navigation. Recently, many deep learning based methods have been proposed and applied to segment and recognize sea ice regions. However, the diverse scales of sea ice areas, the zigzag and fine edge contours, and the difficulty in distinguishing different types of sea ice pose challenges to existing sea ice recognition models. In this paper, a Global-Local Detail Guided Transformer (GDGT) method is proposed for sea ice recognition in optical remote sensing images. In GDGT, a globallocal feature fusiont mechanism is designed to fuse global structural correlation features and local spatial detail features. Furthermore, a detail-guided decoder is developed to retain more high-resolution detail information during feature reconstruction for improving the performance of sea ice recognition. Experiments on the produced sea ice dataset demonstrated the effectiveness and advancement of GDGT.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
IGARSS 2024-2024 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, IGARSS 2024
ISSN: 2153-6996
Year: 2024
Page: 1768-1772
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0