Indexed by:
Abstract:
The recognition of sea ice is of great significance for reflecting climate change and ensuring the safety of ship navigation. Recently, many deep-learning-based methods have been proposed and applied to segment and recognize sea ice regions. However, there are huge differences in sea ice size and irregular edge profiles, which bring challenges to the existing sea ice recognition. In this article, a global-local Transformer network, called SeaIceNet, is proposed for sea ice recognition in optical remote sensing images. In SeaIceNet, a dual global-attention head (DGAH) is proposed to capture global information. On this basis, a global-local feature fusion (GLFF) mechanism is designed to fuse global structural correlation features and local spatial detail features. Furthermore, a detail-guided decoder is developed to retain more high-resolution detail information during feature reconstruction for improving the performance of sea ice recognition. Extensive experiments on several sea ice datasets demonstrated that the proposed SeaIceNet has better performance than the existing methods in multiple evaluation indicators. Moreover, it excels in addressing challenges associated with sea ice recognition in optical remote sensing images, including the difficulty in accurately identifying irregular frozen ponds in complex environments, the broken and unclear boundaries between sea and thin ice that hinder precise segmentation, and the loss of high-resolution spatial details during model learning that complicates refinement.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
ISSN: 0196-2892
Year: 2024
Volume: 62
7 . 5 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 8
Affiliated Colleges: