Indexed by:
Abstract:
Scratch testing is widely used for its convenience and promise but lacks analytical or semi-analytical solutions for determining the mechanical properties of materials. In this paper, by investigating the scratch-induced strain field, we propose a semi-analytical solution for the forward prediction of scratch responses and inverse characterization of plastic parameters of metallic materials. The solution is verified through finite element simulation and experimental data from eight different metallic materials. The results indicate that the method is precise, with an average error of 5.25% in the forward prediction of scratch forces and 7.48% in the inverse characterization of plastic parameters. This work provides a solid theoretical foundation for using scratch tests to assess material plasticity.
Keyword:
Reprint 's Address:
Version:
Source :
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES
ISSN: 0020-7683
Year: 2025
Volume: 310
3 . 4 0 0
JCR@2023
CAS Journal Grade:2
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: