Indexed by:
Abstract:
The development of ultra-high-definition (UHD) displays demands organic light-emitting diodes (OLEDs) with high color purity of all three primary colors for a wide color gamut and high brightness essential for future AR/VR applications. However, the vibronic coupling in organic emitters typically results in broad emissions, with a full width at half maximum (FWHM) exceeding 40-50 nm. Herein, multicolor organic single-crystal microcavity light-emitting diodes (SC-MC-OLEDs) are demonstrated by embedding ultrathin 2D organic single crystals (2D-OSCs) between two silver layers that serve as both electrodes and mirrors. By leveraging the microcavity effect, the resonant output frequencies of SC-MC-OLEDs can be continuously tuned from 448 to 602 nm by adjusting the thickness of 2D-OSCs (i.e., the microcavity length), achieving high color purity with a full width at half maximum (FWHM) of <10 nm. Furthermore, the Purcell effect in SC-MC-OLEDs enhances the radiative rate and improves light-coupling efficiency, resulting in a maximum external quantum efficiency (EQE) of up to 4% and minimal efficiency roll-off. Due to the excellent bipolar transport properties of OSCs, the brightness of SC-MC-OLEDs surpasses 10(6) cd m(-2), along with a degree of linear polarization exceeding 0.9, unlocking new application opportunities.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
ADVANCED MATERIALS
ISSN: 0935-9648
Year: 2025
Issue: 12
Volume: 37
2 7 . 4 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: