Indexed by:
Abstract:
Precise information on agricultural parcels is crucial for effective farm management, crop mapping, and monitoring. Current techniques often encounter difficulties in automatically delineating vectorized parcels from remote sensing images, especially in irregular-shaped areas, making it challenging to derive closed and vectorized boundaries. To address this, we treat parcel delineation as identifying valid parcel vertices from remote sensing images to generate parcel polygons. We introduce a Point-Line-Region interactive multitask network (PLR-Net) that jointly learns semantic features of parcel vertices, boundaries, and regions through point-, line-, and region-related subtasks within a multitask learning framework. We derived an attraction field map (AFM) to enhance the feature representation of parcel boundaries and improve the detection of parcel regions while maintaining high geometric accuracy. The point-related subtask focuses on learning features of parcel vertices to obtain preliminary vertices, which are then refined based on detected boundary pixels to derive valid parcel vertices for polygon generation. We designed a spatial and channel excitation module for feature interaction to enhance interactions between points, lines, and regions. Finally, the generated parcel polygons are refined using the Douglas–Peucker algorithm to regularize polygon shapes. We evaluated PLR-Net using high-resolution GF-2 satellite images from the Shandong, Xinjiang, and Sichuan provinces of China and medium-resolution Sentinel-2 images from The Netherlands. Results showed that our method outperformed existing state-of-the-art techniques (e.g., BsiNet, SEANet, and Hisup) in pixel- and object-based geometric accuracy across all datasets, achieving the highest IoU and polygonal average precision on GF2 datasets (e.g., 90.84% and 82.00% in Xinjiang) and on the Sentinel-2 dataset (75.86% and 47.1%). Moreover, when trained on the Xinjiang dataset, the model successfully transferred to the Shandong dataset, achieving an IoU score of 83.98%. These results demonstrate that PLR-Net is an accurate, robust, and transferable method suitable for extracting vectorized parcels from diverse regions and types of remote sensing images. The source codes of our model are available at https://github.com/mengmengli01/PLR-Net-demo/tree/main. © 2025 Elsevier B.V.
Keyword:
Reprint 's Address:
Email:
Source :
Computers and Electronics in Agriculture
ISSN: 0168-1699
Year: 2025
Volume: 231
7 . 7 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 4
Affiliated Colleges: