Indexed by:
Abstract:
The development of solid-state electrolytes for Li-metal batteries demands high ionic conductivity, interfacial compatibility, and robust mechanical strength to address lithium dendrite formation and manufacturing challenges. Herein, We report a high-performance SSE, designed via in-situ polymerization of cross-linked poly(vinyl carbonate) (PVC) on a LATSP-coated polypropylene (PP) separator, resulting a LATSP@PP-PVC composite solid electrolyte. The PP separator ensures mechanical strength, while the LATSP coating improves wettability and lithium salt dissociation. Additionally, the cross-linked PVC network restricts TFSI− ion migration, enhancing Li+ conductivity. As a result, the composite exhibits excellent mechanical properties (70 MPa tensile strength, 54 % tensile strain), alongside a room-temperature ionic conductivity (3.19 × 10−4 S cm−1) and a Li+ transference number of 0.468. Li metal batteries employing this SSE paired with LiFePO4 cathodes show 81.56 % capacity retention after 800 cycles at 2 C, demonstrating its potential for commercial solid-state batteries. These findings hold promise for advancing the commercialization of composite electrolytes for solid state batteries. © 2025
Keyword:
Reprint 's Address:
Email:
Source :
Chemical Engineering Journal
ISSN: 1385-8947
Year: 2025
Volume: 505
1 3 . 4 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 4
Affiliated Colleges: