Indexed by:
Abstract:
This study addresses the enhancement of thermal stability of zinc alloys, which commonly experience reduced mechanical performance beyond 100 ℃. The 304 stainless steel wires (SSWs) were utilized to fabricate a 3D porous metal rubber (MR) skeleton, facilitating the infusion of molten zinc alloys (ZA8) via squeeze casting to prepare MR/ZA8 composites. The impact of varying SSW volume fractions on the static compression creep (SCC) behavior of the MR/ZA8 composites at 250 ℃ was investigated, while exploring their SCC failure mechanisms. Energy dispersive spectrometer was used to analyze the MR/ZA8 composites both before and after the creep experiments. Findings revealed that in comparison to ZA8, MR/ZA8 composites exhibited notably lower SCC strain, diminishing with the increased SSW volume fraction. Under the applied stresses of 12 MPa, 17 MPa and 20.4 MPa, the steady-state SCC rate of MR/ZA8 composites experienced a reduction of 1 order of magnitude compared to ZA8. The apparent stress exponent n value ranged from 3.37 to 4.84, indicating a SCC mechanism dominated by dislocation climb within the two materials. The elemental composition of the MR/ZA8 composites remained largely unchanged, and the MR skeleton in the MR/ZA8 did not undergo oxidation. © 2025 Elsevier Ltd
Keyword:
Reprint 's Address:
Email:
Source :
Materials Today Communications
Year: 2025
Volume: 42
3 . 7 0 0
JCR@2023
CAS Journal Grade:3
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: