Indexed by:
Abstract:
Lysosomes are pivotal in diverse physiological phenomena, encompassing autophagy, apoptosis, and cellular senescence. The demand for precise tumors treatment has led to the development of specific lysosome-targeting probes capable of elucidating lysosomal dynamics and facilitating targeted cell death. In this research, we report the synthesis and characterization of a novel benzopyrrolidinyl-substituted silicon phthalocyanine (Py-SiPc), designed for selective lysosome labeling and Fluorescence imaging-guided in vitro photodynamic therapy. Furthermore, we encapsulated Py-SiPc within a biocompatible nanocarrier, dipalmitoylphosphatidylethanolaminepolyethylene glycol 2000 (DSPE), to create water-soluble nanoparticles (DSPE@Py-SiPc). These nanoparticles exhibit exceptional lysosome labeling capabilities, as evidenced by bioimaging techniques. Upon exposure to laser irradiation, DSPE@Py-SiPc efficiently induces the production of reactive oxygen species, impairing lysosomal function and triggering lysosomal-mediated cell death. The DSPE@Py-SiPc system emerges as a promising photosensitizer.
Keyword:
Reprint 's Address:
Source :
PHOTODIAGNOSIS AND PHOTODYNAMIC THERAPY
ISSN: 1572-1000
Year: 2025
Volume: 51
3 . 1 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: