Indexed by:
Abstract:
A photocurrent enhancing photoelectrochemical (PEC) immunosensor was developed for chloramphenicol (CAP) detection based on cation exchange reaction. The efficient split-type PEC immunosensor combined with controlled-release strategy was established using the ZnIn2S4/TiO2/Ti3C2 MXene (ZIS/T/M) composite as the photoactive material and CuO as the signal response probe. In the presence of target CAP, CuO-labeled CAP antibody (CuO-mAb) was introduced onto the microplate via a competitive-type immunoassay. Under acidic conditions, a large amount of Cu2+ released from CuO-mAb, which triggered a cation exchange reaction with the Zn2+ in ZIS/T/M-modified photoelectrode to generate CuxS, resulting in enhancing the photocurrent. As a result, the quantitative detection of CAP was achieved by detecting the photocurrent change. Under optimized conditions, the linear range of the sensor was 1 pg/mL to 50 ng/mL, and the detection limit was 0.24 pg/mL. The excellent PEC behavior of ZIS/T/M composite could be attributed to the fact that heterojunction formation improved the migration and separation of the photocarrier. Additionally, by virtue of the photocurrent-enhancing strategy via cation exchange reaction and the controlled releasing signal amplification method of ion, the PEC immunosensor has high sensitivity and satisfactory accuracy, offering great potential applications in the determination of CAP.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
MICROCHIMICA ACTA
ISSN: 0026-3672
Year: 2024
Issue: 12
Volume: 191
5 . 4 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: