Indexed by:
Abstract:
Cognitive Radio (CR) and Energy Harvesting (EH) techniques have offered insights to mitigate issues related to inefficient spectrum utilization and limited energy storage capacity. In Cognitive Radio Networks, security threats, particularly from eavesdroppers, may result in information leakage. This study focuses on enhancing the Physical Layer Security (PLS) of multi-users with EH by employing cooperative jamming via a Unmanned Aerial Vehicle (UAV) to maximize the secure communication rate. In the UAV-assisted EH-CR system, Secondary Users (SUs) can utilize the licensed spectrum band occupied by a Primary User (PU) if the cooperative jamming power from SUs to the PU remains below a certain threshold. SUs can harvest and use Radio Frequency (RF) energy from the Primary Transmitter (PT). The UAV jammer disrupts the eavesdropper by transmitting jamming signals, thereby minimizing stolen information to optimize long-term secure communication performance. The paper formulates the problem of maximizing the average secure communication rate while considering system constraints and jointly optimizes the UAV trajectory, transmission power, and EH coefficient. As the problem is non-convex, it is reformulated as a Markov Decision Process (MDP). The paper employs the Multi-Agent Proximal Policy Optimization (MAPPO) algorithm to address the problem, introduces counterfactual baselines to tackle the credit assignment problem in centralized learning, and integrates the Long Short-Term Memory (LSTM) network to enhance the learning capability of sequential sample data, thereby improving the training efficiency and effectiveness of the algorithm. Simulation results demonstrate the effectiveness and superiority of the proposed method in maximizing the system's secure communication rate. © 1967-2012 IEEE.
Keyword:
Reprint 's Address:
Email:
Source :
IEEE Transactions on Vehicular Technology
ISSN: 0018-9545
Year: 2024
6 . 1 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: