Indexed by:
Abstract:
To accurately measure the surface roughness of precision parts, this paper proposes a non-destructive measurement method of surface roughness using frequency-domain interferometry as the core detection principle and the Hanning window energy center method as the signal demodulation method. The corresponding relationship between the height changes of the sample surface profile and the frequency density changes in the interference signal was established, and the Hanning window energy center method was used to accurately extract the periodic frequency, which can more accurately measure the surface roughness of the sample. After the spectrum correction method, the peak signal-to-noise ratio of the system reaches 50 similar to 60 dB. When the signal-tonoise ratio is 54.8, the theoretical measurement accuracy of the system reaches 5 nm. The vibration error generated during the actual measurement process is only 20 nm. The measurement results of the roughness measuring instrument were compared and analyzed. The experimental results showed that this system has higher measurement accuracy and accuracy, and the maximum repeatability error is 7 nm. To further verify the accuracy of the system, an atomic force microscope was used for comparison and verification. The difference between the two measurement results was 12 nm. This work provides a faster and more accurate non-destructive measurement method for surface roughness measurement.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
OPTICS AND LASERS IN ENGINEERING
ISSN: 0143-8166
Year: 2024
Volume: 178
3 . 5 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: