Indexed by:
Abstract:
Developing highly effective catalysts for ammonia (NH3) synthesis is a challenging task. Even the current, prevalent iron-derived catalysts used for industrial NH3 synthesis require harsh reaction conditions and involve massive energy consumption. Here we show that anchoring buckminsterfullerene (C-60) onto non-iron transition metals yields cluster-matrix co-catalysts that are highly efficient for NH3 synthesis. Such co-catalysts feature separate catalytic active sites for hydrogen and nitrogen. The 'electron buffer' behaviour of C-60 balances the electron density at catalytic transition metal sites and enables the synergistic activation of nitrogen on transition metals in addition to the activation and migration of hydrogen on C-60 sites. As demonstrated in long-term, continuous runs, the C-60-promoting transition metal co-catalysts exhibit higher NH3 synthesis rates than catalysts without C-60. With the involvement of C-60, the rate-determining step in the cluster-matrix co-catalysis is found to be the hydrogenation of *NH2. C-60 incorporation exemplifies a practical approach for solving hydrogen poisoning on a wide variety of oxide-supported Ru catalysts.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
NATURE CHEMISTRY
ISSN: 1755-4330
Year: 2024
Issue: 11
Volume: 16
1 9 . 2 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0