Indexed by:
Abstract:
Learning-based point cloud compression has achieved great success in Rate-Distortion (RD) efficiency. Existing methods usually utilize Variational AutoEncoder (VAE) network, which might lead to poor detail reconstruction and high computational complexity. To address these issues, we propose a Scale-adaptive Asymmetric Sparse Variational AutoEncoder (SAS-VAE) in this work. First, we develop an Asymmetric Multiscale Sparse Convolution (AMSC), which exploits multi-resolution branches to aggregate multiscale features at encoder, and excludes symmetric feature fusion branches to control the model complexity at decoder. Second, we design a Scale Adaptive Feature Refinement Structure (SAFRS) to adaptively adjust the number of Feature Refinement Modules (FRMs), thereby improving RD performance with an acceptable computational overhead. Third, we implement our framework with AMSC and SAFRS, and train it with an RD loss based on Fine-grained Weighted Binary Cross-Entropy (FWBCE) function. Experimental results on 8iVFB, Owlii, and MVUV datasets show that our method outperforms several popular methods, with a 90.0% time reduction and a 51.8% BD-BR saving compared with V-PCC. The code will be available soon at https://github.com/fancj2017/SAS-VAE. © 1963-12012 IEEE.
Keyword:
Reprint 's Address:
Email:
Source :
IEEE Transactions on Broadcasting
ISSN: 0018-9316
Year: 2024
Issue: 3
Volume: 70
Page: 884-894
3 . 2 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: