Indexed by:
Abstract:
In this work, we exploited the synergy between homogeneous and heterogeneous catalysis for the efficient and selective activation of H2O2. The homogeneous catalyst contained a very trace amount of Fe2+ (0.26 ppm), which is lower than the international effluent discharge standard for Fe (0.50 ppm). The heterogeneous catalyst was composed of holey graphitic carbon nitride (g-C3N4) nanosheets carrying highly dispersed single atoms (Mn, Ni, or Cu). Mechanistic studies revealed that the strong interaction between single metal sites and H2O2 forms two adsorption configurations (HOO- and H(O-O)-), which trigger the generation of different reactive oxygen species (ROS). The heterogeneous Mn-C3N4 catalyst provided single Mn-N-3 sites that activated H2O2 to produce O-2 by forming HOO-Mn-N-3, while the adjacent Fe2+ quickly reduced the generated O-2 to O-center dot(2)-, which can efficiently remove organic pollutants and inactivate Escherichia coli under neutral conditions. The single-atom Mn-C3N4, in addition, provided photoactive electrons that drive the efficient cycling of the homogeneous Fe2+/Fe3+ catalyst (which is the rate-determining step) under very trace Fe2+ input. By coupling homogeneous and heterogeneous catalysis, an excellent and advanced oxidation process with potential for large-scale application is reported in this work; the findings also shed light on the theoretical aspects of the efficient and selective activation of H2O2 at the atomic level.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
JOURNAL OF MATERIALS CHEMISTRY A
ISSN: 2050-7488
Year: 2024
Issue: 28
Volume: 12
Page: 17565-17573
1 0 . 8 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: