• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

Zheng, L. (Zheng, L..) [1] | Wu, Y. (Wu, Y..) [2] | Wang, Q. (Wang, Q..) [3] | Du, W. (Du, W..) [4] | Chen, L. (Chen, L..) [5] | Song, J. (Song, J..) [6] | Yang, H. (Yang, H..) [7]

Indexed by:

Scopus

Abstract:

MicroRNA-21 (MiR-21) has been confirmed to be upregulated in tumors, and its abnormal expression is closely associated with tumor occurrence. However, the traditional imaging methods are limited to qualitative imaging of miR-21, and no effective strategy has been developed for monitoring its concentration in vivo during cancer initiation and progression. Herein, a biosensor is created utilizing a NIR-II ratiometric fluorescent nanoprobe to quantitatively monitor dynamic alterations in miR-21 levels in vivo. The nanoprobe (termed DCNP@DNA2@IR806) is constructed by introducing IR806 as a donor and down-conversion nanoparticles (DCNP) as the acceptor, using DNA as linkers. Upon miR-21-responsive initiation of the nanoprobe, the 1550 nm fluorescent signal of DCNP stimulated by a 808 nm laser (F1550, 808Ex) increased because of the close proximity of IR806 to the DCNP and the subsequent non-radiative energy transfer (NRET). Meanwhile, the 1550 nm fluorescent signal of DCNP stimulated by a 980 nm laser (F1550, 980Ex) remained stable because of the absence of NRET. This ratiometric NIR-II fluorescent signal has been confirmed to be a reliable indicator of miR-21 concentration in vivo. The strategy holds promise for further enhancing the understanding of microRNAs-based molecular mechanisms underlying cancer progression, laying a foundation for the early diagnosis of microRNAs-related diseases. © 2024 Wiley-VCH GmbH.

Keyword:

biosensors initiation and progression microRNA-21 nanoprobes NIR-II fluorescence imaging

Community:

  • [ 1 ] [Zheng L.]New Cornerstone Science Laboratory, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE key laboratory for analytical science of food safety and biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
  • [ 2 ] [Wu Y.]State key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 10010, China
  • [ 3 ] [Wang Q.]State key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 10010, China
  • [ 4 ] [Du W.]New Cornerstone Science Laboratory, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE key laboratory for analytical science of food safety and biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
  • [ 5 ] [Chen L.]New Cornerstone Science Laboratory, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE key laboratory for analytical science of food safety and biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
  • [ 6 ] [Song J.]State key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 10010, China
  • [ 7 ] [Yang H.]New Cornerstone Science Laboratory, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE key laboratory for analytical science of food safety and biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China

Reprint 's Address:

Email:

Show more details

Related Keywords:

Source :

Advanced Functional Materials

ISSN: 1616-301X

Year: 2024

Issue: 45

Volume: 34

1 8 . 5 0 0

JCR@2023

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 0

Affiliated Colleges:

Online/Total:109/9866194
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1