Indexed by:
Abstract:
In recent years, the rapid advancement of image generation techniques has resulted in the widespread abuse of manipulated images, leading to a crisis of trust and affecting social equity. Thus, the goal of our work is to detect and localize tampered regions in images. Many deep learning based approaches have been proposed to address this problem, but they can hardly handle the tampered regions that are manually fine-tuned to blend into image background. By observing that the boundaries of tempered regions are critical to separating tampered and non-tampered parts, we present a novel boundary-guided approach to image manipulation detection, which introduces an inherent bias towards exploiting the boundary information of tampered regions. Our model follows an encoder-decoder architecture, with multi-scale localization mask prediction, and is guided to utilize the prior boundary knowledge through an attention mechanism and contrastive learning. In particular, our model is unique in that 1) we propose a boundary-aware attention module in the network decoder, which predicts the boundary of tampered regions and thus uses it as crucial contextual cues to facilitate the localization; and 2) we propose a multi-scale contrastive learning scheme with a novel boundary-guided sampling strategy, leading to more discriminative localization features. Our state-of-art performance on several public benchmarks demonstrates the superiority of our model over prior works.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY
ISSN: 1556-6013
Year: 2024
Volume: 19
Page: 6764-6778
6 . 3 0 0
JCR@2023
Cited Count:
WoS CC Cited Count: 1
SCOPUS Cited Count: 1
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: