Abstract:
为揭示物理信息神经网络在生化领域中的潜力,研究一种基于现代物理信息机器学习工具的新参数估计方法,并通过酶促反应过程模型的案例研究进行了演示,比较软、硬边界约束设置对计算结果的影响.实验分析表明,利用软、硬2种不同约束的物理信息神经网络均能获得精确的模型参数估计值,并在所有的可观测变量上的拟合优度R2在0.98以上,所得到的系统模型能够较好地反映系统的动态过程.所提出的方法融合了模型驱动与数据驱动方法的优势,并且能够在基于采样40次的含噪声小型数据集上获得稳健的训练结果,显著降低对数据量的要求.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
化学工程
ISSN: 1005-9954
Year: 2024
Issue: 7
Volume: 52
Page: 77-81,94
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: