Indexed by:
Abstract:
Transparent dielectric ceramics with ultrafast discharge rates and gigantic power densities are ideal candidates for transparent pulse capacitors (TPCs). However, the requirement of a high external electric field and inferior temperature stability hinder practical applications. (Bi0.5Na0.5)TiO3-based ceramics exhibit large polarization and two characteristic dielectric peaks, easy to obtain high energy-storage density under low electric fields (low-E) and maintain stable energy-storage performance (ESP) within a wide temperature range. However, their low optical transmittance (T%) limits their development into TPCs. In this work, to concurrently obtain high T% and excellent ESP and stability under low-E conditions, we propose a collaborative optimization strategy for determining the regulations of grain size, bandgap energy and domain structure. The results show that the pellucidity and energy-storage characteristics improve with decreasing grain and domain sizes. A relatively high T% of 45.6 % (at 710 nm) and recoverable energy-storage density (Wrec ∼ 3.46 J cm−3 at 197 kV cm−1) are obtained for the (1-x)[0.85(Bi0.5-3yNa0.5-yYb3yHoyTiO3)-0.15SrZrO3]-xBaHfO3 ceramics. Additionally, the dielectric temperature stability also results in splendid storage temperature stability (ΔWrec/Wrec © 2024
Keyword:
Reprint 's Address:
Email:
Source :
Chemical Engineering Journal
ISSN: 1385-8947
Year: 2024
Volume: 496
1 3 . 4 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: