Indexed by:
Abstract:
Lanthanide ion contained metal–organic frameworks (MOFs) have garnered significant attention in the fields of solid-state lighting and chemical sensing due to their porous structure and distinctive optical properties. However, they also present challenges because of the limited photoluminescence (PL) intensity resulting from the parity-forbidden f–f transitions of lanthanide ions. Herein, the study reports a new heterometallic MOFs Ln3Li2L4 (Li-Ln-MOF, Ln = Y, Eu, Tb and Dy, L = deprotonated 1,3,5-tris(4-carboxyphenyl)benzene) with a Brunauer-Emmett-Teller (BET) surface area of 774.1 m2/g. The porous crystal structure of Li-Ln-MOF is characterized by three kinds of channels interpenetrating with each other. By employing ligand alternation and lanthanide ion alloying strategies, Li-Y1-xEux-MOF1 crystal isostructural with Li-Ln-MOF is synthesized by using 2,4,6-tris(4-carboxyphenyl)-1,3,5-triazine (H3TATB) as ligand. The Li-Y0.7Eu0.3-MOF1 crystal excels in the comprehensive performance with a BET surface area of 858.8 m2 g−1 and a near-unity PL quantum yield. The time density functional theory and natural transition orbitals calculations unravel that the outstanding optical properties Li-Y0.7Eu0.3-MOF1 originates from the charge transfer between TATB3− and Eu3+. Benefiting from the excellent comprehensive performance of Li-Y1-xEux-MOF1, the study reveals their potentials as single-composition white-light emission and fluorescent sensing probe for the detection of nitrobenzene. © 2024 Wiley-VCH GmbH.
Keyword:
Reprint 's Address:
Email:
Source :
Advanced Optical Materials
Year: 2024
Issue: 21
Volume: 12
8 . 0 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: