• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

Li, Enlong (Li, Enlong.) [1] | Wang, Xiumei (Wang, Xiumei.) [2] | Yu, Xipeng (Yu, Xipeng.) [3] | Yu, Rengjian (Yu, Rengjian.) [4] | Li, Wenwu (Li, Wenwu.) [5] | Guo, Tailiang (Guo, Tailiang.) [6] | Chu, Junhao (Chu, Junhao.) [7] | Chen, Huipeng (Chen, Huipeng.) [8]

Indexed by:

EI

Abstract:

Efficient in-sensor computing necessitates linear, bidirectional, and centrosymmetric photoresponse weight updates; however, the realization of these attributes poses a persistent challenge, with most photosensor devices achieving linear analog weight updates while falling short of accomplishing bidirectional and centrosymmetric characteristics. Here, the development of a quantum dot (QD)–based bulk heterojunction synaptic transistor (QBST) with multi-factor modulation through surface ligand engineering of blend QDs is reported. By controlling the charge transmission between QDs and the semiconductor, the QBST device enables tunable fading memory, which transforms linear weight updates in short-chain devices into linear, bidirectional, and unprecedented centrosymmetric optical synaptic responses in long-chain devices. Moreover, through the synergy of chemical and electric factors, the convolutional kernel of QBSTs-based convolutional neural network realizes enhanced recognition for complex noisy fashion-costume images, achieving an impressive 90.3% accuracy in the long-chain device, highlighting the efficiency of centrosymmetric weight updates. The results demonstrate that surface ligand engineering offers a promising approach for customizable synaptic modulation, facilitating energy- and time-efficient in-sensor computing. © 2024 Wiley-VCH GmbH.

Keyword:

Blending Convolution Heterojunctions Image enhancement Ligands Nanocrystals Semiconductor quantum dots Transistors

Community:

  • [ 1 ] [Li, Enlong]Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Department of Materials Science, Fudan University, Shanghai; 200433, China
  • [ 2 ] [Li, Enlong]Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou; 350002, China
  • [ 3 ] [Li, Enlong]Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou; 350100, China
  • [ 4 ] [Wang, Xiumei]Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou; 350002, China
  • [ 5 ] [Wang, Xiumei]Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou; 350100, China
  • [ 6 ] [Wang, Xiumei]School of Engineering, Anhui Agricultural University, Anhui, Hefei; 230036, China
  • [ 7 ] [Yu, Xipeng]Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou; 350002, China
  • [ 8 ] [Yu, Rengjian]Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou; 350002, China
  • [ 9 ] [Li, Wenwu]Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Department of Materials Science, Fudan University, Shanghai; 200433, China
  • [ 10 ] [Guo, Tailiang]Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou; 350002, China
  • [ 11 ] [Guo, Tailiang]Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou; 350100, China
  • [ 12 ] [Chu, Junhao]Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Department of Materials Science, Fudan University, Shanghai; 200433, China
  • [ 13 ] [Chen, Huipeng]Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou; 350002, China
  • [ 14 ] [Chen, Huipeng]Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou; 350100, China

Reprint 's Address:

Email:

Show more details

Related Keywords:

Source :

Advanced Functional Materials

ISSN: 1616-301X

Year: 2024

Issue: 26

Volume: 34

1 8 . 5 0 0

JCR@2023

CAS Journal Grade:1

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 2

Affiliated Colleges:

Online/Total:117/10280939
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1