Indexed by:
Abstract:
针对更丰富卷积特征(RCF)算法检测电力线时存在边缘模糊、特征图包含太多噪声、在融合特征图时丢失多尺度信息等问题,对RCF算法进行改进.首先,使用具有平移不变性的下采样技术增强模型的鲁棒性;然后,在RCF主干网络中引入卷积块注意力模块(CBAM)机制,提高模型对电力线特征的表达能力;最后,在RCF的侧输出网络中加入级联网络,借助基于通道注意力机制的多尺度特征融合模块对特征图进行融合,从而获得更优异的细节保持效果.实验结果表明,改进模型的最优数据集规模、最佳图像比例和平均精度可分别提高0.7%、 1.3%和1.7%,检测结果噪声数量少,电力线更加清晰准确.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
福州大学学报(自然科学版)
ISSN: 1000-2243
CN: 35-1337/N
Year: 2024
Issue: 02
Volume: 52
Page: 168-175
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 5
Affiliated Colleges: