Indexed by:
Abstract:
Poly(heptazine imide) (PHI), a semicrystalline version of carbon nitride photocatalyst based on heptazine units, has gained significant attention for solar H2 production benefiting from its advantages including molecular synthetic versatility, excellent physicochemical stability and suitable energy band structure to capture visible photons. Typically, PHI is obtained in salt-melt synthesis in the presence of alkali metal chlorides. Herein, we examined the role of binary alkali metal bromides (LiBr/NaBr) with diverse compositions and melting points to rationally modulate the polymerization process, structure, and properties of PHI. Solid characterizations revealed that semicrystalline PHI with a condensed pi-conjugated system and rapid charge separation rates were obtained in the presence of LiBr/NaBr. Accordingly, the apparent quantum yield of hydrogen using the optimized PHI reaches up to 62.3% at 420 nm. The density functional theory calculation shows that the dehydrogenation of the ethylene glycol has a lower energy barrier than the dehydrogenation of the other alcohols from the thermodynamic point of view. This study holds great promise for rational modulation of the structure and properties of conjugated polymeric materials. A new poly(heptazine imide) was synthesized via salt-melt synthesis in binary alkali metal bromides with accelerated carrier transfer and decreased internal structural defects for photocatalytic hydrogen production. image
Keyword:
Reprint 's Address:
Source :
INTERDISCIPLINARY MATERIALS
ISSN: 2767-4401
Year: 2024
Issue: 3
Volume: 3
Page: 389-399
2 4 . 5 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count: 14
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1