Abstract:
针对现有车牌检测算法存在的模型参数量过大、实时性差和检测效果不佳等问题,提出一种基于深度学习的轻量化车牌检测网络(Lightweight License Plate Detection Networks,LW-LPDNet)模型。该模型以PP-LCNet作为骨干网络,大幅减少模型参数量,同时融入压缩-激励网络(Squeeze and Excitation Networks,SE-Net)注意力模块,增加车牌信息的通道权重。最后,引入SimSPPF和GSConv,对多尺度特征进行融合,增大感受野,进一步提高检测准确率。通过对模型进行训练和测试,LW-LPDNet在中国城市停车数据集(Chinese City Parking Dataset,CCPD)上获得98.9%的平均精确率,优于其他车牌检测方法,且模型参数量仅有0.13 MB,检测速度达到243 f·s~(-1),具备较高的实时性。
Keyword:
Reprint 's Address:
Email:
Version:
Source :
电视技术
ISSN: 1002-8692
CN: 11-2123/TN
Year: 2024
Issue: 03
Volume: 48
Page: 50-54,64
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 8
Affiliated Colleges: