Indexed by:
Abstract:
Organic scintillators with efficient X-ray excited luminescence are essential for medical diagnostics and security screening. However, achieving excellent organic scintillation materials is challenging due to low X-ray absorption coefficients and inferior radioluminescence (RL) intensity. Herein, supramolecular interactions are incorporated, particularly halogen bonding, into organic scintillators to enhance their radioluminescence properties. By introducing heavy atoms (X = Cl, Br, I) into 9,10-bis(4-pyridyl)anthracene (BPA), the formation of halogen bonding (BPA-X) enhances their X-ray absorption coefficient and restricts the molecular vibration and rotation, which boosts their RL intensity. The RL intensity of BPA-Cl and BPA-Br fluorochromes increased by over 2 and 6.3 times compared to BPA, respectively. Especially, BPA-Br exhibits an ultrafast decay time of 8.25 ns and low detection limits of 25.95 ± 2.49 nGy s−1. The flexible film constructed with BPA-Br exhibited excellent X-ray imaging capabilities. Furthermore, this approach is also applicable to organic phosphors. The formation of halogen bonding in bromophenyl-methylpyridinium iodide (PYI) led to a fourfold increase in RL intensity compared to bromophenyl-methyl-pyridinium (PY). It suggests that halogen bonding serves as a promising and effective molecular design strategy for the development of high-performance organic scintillator materials, presenting new opportunities for their applications in radiology and security screening. © 2023 Wiley-VCH GmbH.
Keyword:
Reprint 's Address:
Email:
Source :
Small
ISSN: 1613-6810
Year: 2024
Issue: 14
Volume: 20
1 3 . 0 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count: 4
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 4
Affiliated Colleges: