Indexed by:
Abstract:
A thermal conductive structural adhesive (TCSA) plays a crucial role in battery performance and safety. TCSA made of polyurethane (PU) has not only a good thermal conductivity but also good mechanical strength and substrate bonding strength. However, it has to be cost-effective and easy to be prepared. This work aims to synthesize a series of castor oil-based PU TCSAs with different amounts of thermal conductive powder using commercially available castor oil polyols, isocyanates, Al2O3, and additives. The shear strength of the TCSA containing 88% thermally conductivity powder reached 5.6 MPa, which was similar to that without the thermal conductivity fillers, but its toughness significantly decreased. Its thermal conductivity was as high as 1.8 W/mK, and it was thermally stable below 270 degrees C. Preparation process of castor oil based TCSA and application scenarios in new energy batteries. image
Keyword:
Reprint 's Address:
Email:
Version:
Source :
JOURNAL OF APPLIED POLYMER SCIENCE
ISSN: 0021-8995
Year: 2024
Issue: 24
Volume: 141
2 . 7 0 0
JCR@2023
Cited Count:
WoS CC Cited Count: 2
SCOPUS Cited Count: 1
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 8
Affiliated Colleges: