Indexed by:
Abstract:
The Borodin-Kostochka Conjecture states that for a graph G, if Delta(G)>= 9\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta (G)\ge 9$$\end{document}, then chi(G)<= max{Delta(G)-1,omega(G)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi (G)\le \max \{\Delta (G)-1,\omega (G)\}$$\end{document}. In this paper, we prove the Borodin-Kostochka Conjecture holding for odd-hole-free graphs.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
GRAPHS AND COMBINATORICS
ISSN: 0911-0119
Year: 2024
Issue: 2
Volume: 40
0 . 6 0 0
JCR@2023
Cited Count:
WoS CC Cited Count: 1
SCOPUS Cited Count: 1
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: