• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

Zhao, Xingkai (Zhao, Xingkai.) [1] | Zhuang, Yu (Zhuang, Yu.) [2] | Cao, Yongjian (Cao, Yongjian.) [3] | Cai, Fengying (Cai, Fengying.) [4] | Lv, Yicheng (Lv, Yicheng.) [5] | Zheng, Yunquan (Zheng, Yunquan.) [6] (Scholars:郑允权) | Yang, Jianmin (Yang, Jianmin.) [7] (Scholars:杨建民) | Shi, Xianai (Shi, Xianai.) [8] (Scholars:石贤爱)

Indexed by:

EI Scopus SCIE

Abstract:

The effective repair of large bone defects remains a major challenge due to its limited self-healing capacity. Inspired by the structure and function of the natural periosteum, an electrospun biomimetic periosteum is constructed to programmatically promote bone regeneration using natural bone healing mechanisms. The biomimetic periosteum is composed of a bilayer with an asymmetric structure in which an aligned electrospun poly(epsilon-caprolactone)/gelatin/deferoxamine (PCL/GEL/DFO) layer mimics the outer fibrous layer of the periosteum, while a random coaxial electrospun PCL/GEL/aspirin (ASP) shell and PCL/silicon nanoparticles (SiNPs) core layer mimics the inner cambial layer. The bilayer controls the release of ASP, DFO, and SiNPs to precisely regulate the inflammatory, angiogenic, and osteogenic phases of bone repair. The random coaxial inner layer can effectively antioxidize, promoting cell recruitment, proliferation, differentiation, and mineralization, while the aligned outer layer can promote angiogenesis and prevent fibroblast infiltration. In particular, different stages of bone repair are modulated in a rat skull defect model to achieve faster and better bone regeneration. The proposed biomimetic periosteum is expected to be a promising candidate for bone defect healing. An electrospun biomimetic periosteum with an asymmetric structure is prepared through aligned and coaxial electrospinning for programed promotion of bone regeneration. This biomimetic periosteum exhibits controlled release of multiple agents, enabling regulation of the inflammatory, angiogenic, and osteogenic phases that are essential for bone healing. It demonstrates good efficacy in promoting bone regeneration in a rat skull defect model. image

Keyword:

asymmetric structure biomimetic periosteum bone defect electrospinning programmed repair

Community:

  • [ 1 ] [Zhao, Xingkai]Fuzhou Univ, Coll Biol Sci & Engn, 2 Xueyuan Rd, Fuzhou 350108, Peoples R China
  • [ 2 ] [Zhuang, Yu]Fuzhou Univ, Coll Biol Sci & Engn, 2 Xueyuan Rd, Fuzhou 350108, Peoples R China
  • [ 3 ] [Cai, Fengying]Fuzhou Univ, Coll Biol Sci & Engn, 2 Xueyuan Rd, Fuzhou 350108, Peoples R China
  • [ 4 ] [Lv, Yicheng]Fuzhou Univ, Coll Biol Sci & Engn, 2 Xueyuan Rd, Fuzhou 350108, Peoples R China
  • [ 5 ] [Yang, Jianmin]Fuzhou Univ, Coll Biol Sci & Engn, 2 Xueyuan Rd, Fuzhou 350108, Peoples R China
  • [ 6 ] [Shi, Xianai]Fuzhou Univ, Coll Biol Sci & Engn, 2 Xueyuan Rd, Fuzhou 350108, Peoples R China
  • [ 7 ] [Cao, Yongjian]Fuzhou Univ, Fujian Key Lab Med Instrument & Pharmaceut Technol, 2 Xueyuan Rd, Fuzhou 350108, Peoples R China
  • [ 8 ] [Zheng, Yunquan]Fuzhou Univ, Fujian Key Lab Med Instrument & Pharmaceut Technol, 2 Xueyuan Rd, Fuzhou 350108, Peoples R China
  • [ 9 ] [Yang, Jianmin]Fuzhou Univ, Fujian Key Lab Med Instrument & Pharmaceut Technol, 2 Xueyuan Rd, Fuzhou 350108, Peoples R China
  • [ 10 ] [Shi, Xianai]Fuzhou Univ, Fujian Key Lab Med Instrument & Pharmaceut Technol, 2 Xueyuan Rd, Fuzhou 350108, Peoples R China

Reprint 's Address:

  • 杨建民 石贤爱

    [Yang, Jianmin]Fuzhou Univ, Coll Biol Sci & Engn, 2 Xueyuan Rd, Fuzhou 350108, Peoples R China;;[Shi, Xianai]Fuzhou Univ, Coll Biol Sci & Engn, 2 Xueyuan Rd, Fuzhou 350108, Peoples R China;;[Yang, Jianmin]Fuzhou Univ, Fujian Key Lab Med Instrument & Pharmaceut Technol, 2 Xueyuan Rd, Fuzhou 350108, Peoples R China;;[Shi, Xianai]Fuzhou Univ, Fujian Key Lab Med Instrument & Pharmaceut Technol, 2 Xueyuan Rd, Fuzhou 350108, Peoples R China

Show more details

Related Keywords:

Source :

ADVANCED HEALTHCARE MATERIALS

ISSN: 2192-2640

Year: 2024

Issue: 12

Volume: 13

1 0 . 0 0 0

JCR@2023

Cited Count:

WoS CC Cited Count: 11

SCOPUS Cited Count: 11

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 3

Online/Total:231/9697640
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1