Indexed by:
Abstract:
Water polluted by pharmaceutically active compounds (PhACs) and water-borne pathogens urgently need to develop eco-friendly and advanced water treatment techniques. This paper evaluates the potential of using calcium peroxide (CaO2), a safe and biocompatible oxidant both PhACs (thiamphenicol, florfenicol, carbamazepine, phenobarbital, and primidone) and pathogens (Escherichia coli, Staphylococcus aureus) in water. This paper evaluates the potential of using calcium peroxide (CaO2) as a safe and biocompatible oxidant to remove both PhACs (thiamphenicol, florfenicol, carbamazepine, phenobarbital, and primidone) and pathogens (Escherichia coli, Staphylococcus aureus) in water. The increased CaO2 dosage increased efficiencies of PhACs attenuation and pathogens inactivation, and both exhibited pseudo-first-order degradation kinetics (R2 > 0.90). PhACs attenuation were mainly via oxidization (H2O2, center dot OH/O center dot-, and O2 center dot- ) and alkaline hydrolysis (OH- ) from CaO2. Moreover, concentrations of these reactive species and their contributions to PhACs attenuation were quantified, and mechanistic model was established and validated. Besides, possible transformation pathways of target PhACs except primidone were proposed. As for pathogen indicators, the suitable inactivation dosage of CaO2 was 0.1 g L-1. The oxidability (18-64%) and alkalinity (82-36%) generated from CaO2 played vital roles in pathogen inactivation. In addition, CaO2 at 0.01-0.1 g L-1 can be applied in remediation of SW contaminated by PhACs and pathogenic bacteria, which can degrade target PhACs with efficiencies of 21-100% under 0.01 g L-1 CaO2, and inactivate 100% of test bacteria under 0.1 g L-1 CaO2. In short, capability of CaO2 to remove target PhACs and microbial pathogens reveals its potential to be used as a representative technology for the advanced treatment of waters contaminated by organic compounds and microbial pathogens.
Keyword:
Reprint 's Address:
Email:
Source :
ENVIRONMENTAL RESEARCH
ISSN: 0013-9351
Year: 2022
Volume: 212
8 . 3
JCR@2022
7 . 7 0 0
JCR@2023
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 5
SCOPUS Cited Count: 5
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 5
Affiliated Colleges: