Indexed by:
Abstract:
Solar-driven photocatalytic hydrogen peroxide (H2O2) production presents a promising avenue for achieving sustainable water disinfection. However, the development of a robust and durable system for practical applications remains a notable and unresolved challenge. Herein, a star photocatalyst, the covalent organic frameworks (COFs), was modified with CdS for boosting environmentally benign H2O2 synthesis. Under simulated sunlight and without sacrificial reagents, the composite material exhibited a boosting capacity for H2O2 production, which was attributable to the establishment of a "step" (S)-scheme transfer pathway and facilitation of adequate oxygen diffusion. Nevertheless, it was found that photocatalytically derived H2O2 alone exhibited inefficient disinfection performance, whereas the addition of Fe-(II) allowed rapid inactivation of Escherichia coli, emphasizing the pivotal importance of integrating photocatalysis and Fenton reactions within the photocatalytic H2O2 production system. Furthermore, a dual-compartment reactor, employing a semipermeable membrane, was devised to spatially segregate photocatalysts from microorganisms. Such an operation mode enabled H2O2 diffusion from the photocatalytic compartment to the microbial compartment, thereby achieving a "long-distance" sterilization manner and simultaneous consummating recovery strategy of the photocatalysts. This study not only provides a paradigmatic approach for boosting the production of H2O2 from a COF-based material but also illuminates an innovative technological option for sustainable photocatalytic-based water disinfection.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
ACS SUSTAINABLE CHEMISTRY & ENGINEERING
ISSN: 2168-0485
Year: 2023
Issue: 49
Volume: 11
Page: 17552-17563
7 . 1
JCR@2023
7 . 1 0 0
JCR@2023
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 11
SCOPUS Cited Count: 18
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0