Indexed by:
Abstract:
针对麻雀搜索算法面对具有强约束、非凸性和不可微特征的复杂问题所存在的开发与探索能力不平衡、易陷入局部最优、过早收敛和种群多样性较低等不足,提出一种求解复杂约束优化问题的多策略混合麻雀搜索算法.首先,利用反向学习策略构建双向初始化机制,以达到获得分布更优的初始种群的目的;其次,设计一种基于交叉与变异算子的位置更新公式,扩大搜索范围,丰富搜索机制,以平衡算法探索和开发能力,同时提高算法的收敛精度和速度;最后,使用社区学习策略对种群进行精炼,强化开发能力与跳出局部极值的能力,并保持种群的多样性.分别在CEC2017的28个实数约束优化问题和1个工程优化问题上进行了性能评估,实验结果表明,所提出的算法对比其他优化算法具有寻优能力强、收敛精度高、收敛速度快等优势,可有效解决复杂约束优化问题.
Keyword:
Reprint 's Address:
Email:
Source :
控制与决策
ISSN: 1001-0920
CN: 21-1124/TP
Year: 2023
Issue: 12
Volume: 38
Page: 3336-3344
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 4
Affiliated Colleges: