Abstract:
针对东南丘陵山地降雨型滑坡变形发展特征,现有滑坡预测模型应用存在局限,结合滑坡变形特点研究基于智能算法的滑坡预测模型.以福建安溪尧山滑坡为例,选取2019年9月至2022年6月滑坡监测数据进行研究,采用集对分析、灰关联法、麻雀搜索算法及深度极限学习机对滑坡位移进行预测,提出了一种考虑滑坡位移滞后时间基于深度学习的滑坡位移预测模型.结果表明:SSA-DELM模型的MAE、MAPE、RMSE相较于已有的BP神经网络、SVM模型均更小,同时模型结合了滑坡影响因子以及水位-位移滞后特征,具有明确的物理意义,位移预测效果较好且精度较高,可推广应用于类似的滑坡位移预测中.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
水利与建筑工程学报
ISSN: 1672-1144
Year: 2023
Issue: 2
Volume: 21
Page: 128-136
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: