Indexed by:
Abstract:
Diabetic retinopathy(DR) is the major cause of blindness, and the pathogenesis is unknown. Ultra-wide optical coherence tomography angiography imaging (UW-OCTA) can help ophthalmologists to diagnose DR. Automatic and accurate segmentation of lesions is essential for the diagnosis of DR, yet accurate identification and segmentation of lesions from UW-OCTA images remains a challenge. We proposed a modified nnUNet named nnUNet-CBAM. Three networks were trained to segment each lesion separately. Our method was evaluated in DRAC2022 diabetic retinopathy analysis challenge, where segmentation results were tested on 65 UW-OCTA images. These images are standardized UW-OCTA. Our method achieved a mean dice similarity coefficient (mDSC) of 0.4963 and a mean intersection over union (mIOU) of 0.3693. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
ISSN: 0302-9743
Year: 2023
Volume: 13597 LNCS
Page: 38-45
Language: English
0 . 4 0 2
JCR@2005
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 7
Affiliated Colleges: