Indexed by:
Abstract:
Designing new biochemical sensors and achieving selectivity and high-sensitivity analysis is one of main research directions for immunoassays. Herein, a liposome-amplification photoelectrochemical (PEC) immunoassay was developed using ultrathin mesoporous bismuth chloride oxide nanosheets (BiOCl MSCN) for the highly selective and sensitive detection of carcinoembryonic antigen (CEA). Based on good photocurrent response of BiOCl MSCN toward dopamine, a liposome-conjugated secondary antibody loaded with dopamine was added for specific recognition in the presence of CEA. After the lysis treatment, the liberated dopamine was injected into the three-electrode electrolytic cell to enhance the photocurrent of BiOCl MSCN. Under the optimized conditions, the constructed liposome-mediated PEC immunoassay showed high sensitivity against CEA, with a dynamic response in the linear range of 0.05 ng mL−1 to 100 ng mL−1 and a detection limit of 35 pg mL−1. The present study proposes a new approach to the liposome-mediated PEC immunoassay constructed on ultrathin mesoporous BiOCl nanosheets, which can be used to target further the study of the sensing mechanism. © 2023 Elsevier B.V.
Keyword:
Reprint 's Address:
Email:
Source :
Biosensors and Bioelectronics
ISSN: 0956-5663
Year: 2023
Volume: 239
1 0 . 7
JCR@2023
1 0 . 7 0 0
JCR@2023
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
SCOPUS Cited Count: 9
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: