• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

Zhou, Y. (Zhou, Y..) [1] | Chen, Q. (Chen, Q..) [2] | Huang, G. (Huang, G..) [3] | Huang, S. (Huang, S..) [4] | Lin, C. (Lin, C..) [5] | Lin, X. (Lin, X..) [6] | Xie, Z. (Xie, Z..) [7]

Indexed by:

Scopus

Abstract:

Okadaic acid (OA) biotoxin acts a well-established inhibitor of protein phosphatase even a tumor promoter of human being, arouse great attention in safety monitoring. However, the powerful and convenient nanosensing technologies for addressing the demands such as rapidity, high sensitivity, and stability in the in-field test of OA shellfish toxin is still scarce. Herein, a high-performance magnetic biometric nanosensor (MBNS) integrating oriented aptamers and ultrasensitive laser-induced fluorescence (LIF) was firstly proposed for the in-field detection of trace OA in seafoods. High-density aptamers hybridized with FAM-labeled cDNA were tethered to the surface of AuNPs on magnetic MIL-101@Fe3O4, and then finely regulated by mercaptohexyl alcohol (MCH) to be orderly assembled, as was successfully utilized to engineer an active biological nanosensor for highly specific recognition of OA. Aptamers anchored on magnetic Fe3O4@MOF@AuNPs activate a biometric microreactor of OA, in which the superior LIF properties, conformation regulation of aptamer, and the specific recognition using aptamer genes were adopted. The magnetic nanosensor with an excellent specificity and super sensitivity for OA analysis was achieved within 20 min. Moreover, the content of captured OA could facilely be recorded by measuring the fluorescence intensity, and the limit of detection (LOD) and limit of quantitation of OA (LOQ) reached 0.015 and 0.050 ng/mL respectively, which was far better than most aptamer-based biometric sensing methods. The feasibility for accurate test of trace OA toxin in the fortified shellfish samples was validated with the recovery yields of 88.2–107.5% and RSD of 0.5–7.6%, respectively. The result demonstrated that the oriented-aptamer encoded MNS had significant practical values in rapid and ultrasensitive detection of OA biotoxin and the related safety applications. © 2023 Elsevier B.V.

Keyword:

Laser-induced fluorescence Magnetic nanosensor Okadaic acid Oriented aptamer Ultrasensitive test

Community:

  • [ 1 ] [Zhou Y.]Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, China
  • [ 2 ] [Chen Q.]College of Tourism and Leisure Management, Fujian Business University, Fujian, Fuzhou, 350012, China
  • [ 3 ] [Huang G.]Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, China
  • [ 4 ] [Huang S.]Zhicheng College, Fuzhou University, 350102, China
  • [ 5 ] [Lin C.]Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, China
  • [ 6 ] [Lin X.]Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, China
  • [ 7 ] [Lin X.]Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety in Fujian Province, Fuzhou University, Fuzhou, 350108, China
  • [ 8 ] [Xie Z.]Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, China

Reprint 's Address:

Email:

Show more details

Related Keywords:

Source :

Talanta

ISSN: 0039-9140

Year: 2024

Volume: 266

5 . 6 0 0

JCR@2023

ESI HC Threshold:11

Cited Count:

WoS CC Cited Count: 0

SCOPUS Cited Count: 2

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 3

Affiliated Colleges:

Online/Total:80/10022101
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1