Indexed by:
Abstract:
The purpose of graph embedding is to encode the known node features and topological information of graph into low-dimensional embeddings for further downstream learning tasks. Graph autoencoders can aggregate graph topology and node features, but it is highly dependent on the gradient descent optimizer with a large iterative learning time, and susceptible to local optimal solutions. Thus, we propose Graph Convolutional Extreme Learning Machine Autoencoder. To address the limitation that the extreme learning machine autoencoder cannot use topological information, the graph convolution operation is introduced between the input layer and the hidden layer to improve the representation ability of the graph embedding obtained. Experiments of link prediction and node classification on 5 real datasets show that our method is effective. © 2023 IEEE.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
Year: 2023
Page: 777-782
Language: English
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: