• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

Wang, Jingbin (Wang, Jingbin.) [1] (Scholars:汪璟玢) | Huang, Hao (Huang, Hao.) [2] | Wu, Yuwei (Wu, Yuwei.) [3] | Zhang, Fuyuan (Zhang, Fuyuan.) [4] | Zhang, Sirui (Zhang, Sirui.) [5] | Guo, Kun (Guo, Kun.) [6] (Scholars:郭昆)

Indexed by:

EI Scopus SCIE

Abstract:

Link prediction in open knowledge graphs (OpenKGs) is crucial for applications like question answering and recommendation systems. Existing OpenKG models leverage the semantic information of noun phrases (NPs) to enhance the performance in the link prediction task. However, these models only extract superficial semantic information from NPs, ignoring the fact that an NP possesses diverse semantics. Furthermore, these models have not fully exploited the semantic information of the relation phrases (RPs). To address these issues, we propose a model for link prediction called Open Knowledge Graph Link Prediction with Semantic -Aware Embedding (SeAE). First, we develop an adaptive disentanglement embedding (ADE) mechanism to learn the intrinsically abundant semantics of NPs. The ADE mechanism can adaptively calculate the embedding segmentation number according to the dataset and has an ingenious method for updating embeddings. Second, we integrate the attention mechanism into the GRU encoder to obtain the distribution of importance inside RP, facilitating a more comprehensive capture of the RP's semantic information and enhancing the model's interpretability. Finally, we design a relation gate, which extracts the RP semantic features of tail NP from the shared edge. This gate realizes the relation constraints on entities while enhancing the interaction between entities and relations. Extensive experiments on four benchmarks demonstrate that SeAE outperforms the state-of-the-art models, resulting in improvements of approximately 5.4% and 7.4% in MRR on ReVerb45K and ReVerb45KF datasets respectively.

Keyword:

Attention mechanism Knowledge graph embedding Link prediction Open knowledge graph Semantic-aware

Community:

  • [ 1 ] [Wang, Jingbin]Fuzhou Univ, Coll Comp & Data Sci, Fuzhou 350108, Peoples R China
  • [ 2 ] [Huang, Hao]Fuzhou Univ, Coll Comp & Data Sci, Fuzhou 350108, Peoples R China
  • [ 3 ] [Wu, Yuwei]Fuzhou Univ, Coll Comp & Data Sci, Fuzhou 350108, Peoples R China
  • [ 4 ] [Zhang, Fuyuan]Fuzhou Univ, Coll Comp & Data Sci, Fuzhou 350108, Peoples R China
  • [ 5 ] [Zhang, Sirui]Fuzhou Univ, Coll Comp & Data Sci, Fuzhou 350108, Peoples R China
  • [ 6 ] [Guo, Kun]Fuzhou Univ, Coll Comp & Data Sci, Fuzhou 350108, Peoples R China

Reprint 's Address:

  • 郭昆

    [Guo, Kun]Fuzhou Univ, Coll Comp & Data Sci, Fuzhou 350108, Peoples R China

Show more details

Related Keywords:

Source :

EXPERT SYSTEMS WITH APPLICATIONS

ISSN: 0957-4174

Year: 2024

Volume: 249

7 . 5 0 0

JCR@2023

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 0

Online/Total:26/10041909
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1