Indexed by:
Abstract:
In this work, a one-step aptasensor for ultrasensitive detection of homocysteine (HCY) is developed based on multifunctional carbon nanotubes, which is magnetic multi-walled carbon nanotubes (Fe3O4@MWCNTs) com-bined with the aptamer (Apt) for HCY (Fe3O4@MWCNTs-Apt). Fe3O4@MWCNTs-Apt have multiple functions as follows. (1) Apt immobilized could selectively capture all target molecules HCY in the sample; (2) Magnetic Fe3O4 nanoparticles could separate all target molecules HCY captured by Apt from the sample substrate to eliminate the background interference and achieve one-step preparation of the aptasensor; And (3), MWCNTs with good electrical conductivity become a new electrode surface, construct a three-dimensional electrode surface network, make the electron transfer easier and thus then enhance the signal response. Results show that there is a good linear relationship between peak current of square-wave voltammetry (SWV) and HCY concen-tration in the range of 0.01 & mu;mol/L-1 & mu;mol/L, with a limit of detection (LOD) 0.002 & mu;mol/L. And, selectivity, reproducibility, precision and accuracy are all satisfactory. In addition, it could be applied to the detection of HCY in the plasma of lung cancer patients successfully, suggesting that this one-step aptasensor for HCY has a potential in practical clinical applications.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
BIOELECTROCHEMISTRY
ISSN: 1567-5394
Year: 2023
Volume: 153
4 . 8
JCR@2023
4 . 8 0 0
JCR@2023
ESI Discipline: BIOLOGY & BIOCHEMISTRY;
ESI HC Threshold:30
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 4
SCOPUS Cited Count: 5
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: