Indexed by:
Abstract:
复合绝缘子在不同缺陷类型下表现出不同的发热特征,基于复合绝缘子中心轴温度数据,提出了一种基于一维残差网络的复合绝缘子发热缺陷检测方法。首先,统计分析复合绝缘子不同缺陷类型下的异常温升范围及位置信息,得到各缺陷类型下的复合绝缘子中心轴温度数据样本集;然后,建立一维残差网络模型,在残差块中引入空洞卷积来扩大感受野,并加入有效通道注意力机制模块(efficient channel attention network, ECA_Net),提升与缺陷类别相关性较高的特征权重;最后,进行了算例验证及模型对比,同时采用t分布随机紧邻嵌入(t-distributed stochastic neighbor embedding,t-SNE)可视化方法,反映模型特征提取的效果。结果表明:该模型能够有效捕捉中心轴线温度数据的空间维度信息,自适应提取类别区分度较大的特征,相较于普通卷积、自编码器(auto encoder, AE)和支持向量机(support vector machine, SVM),其识别准确率得到了提升,具有较好的鲁棒性和泛化能力,实现了端到端的复合绝缘子发热缺陷检测。
Keyword:
Reprint 's Address:
Email:
Version:
Source :
红外技术
ISSN: 1001-8891
CN: 53-1053/TN
Year: 2023
Issue: 06
Volume: 45
Page: 663-670
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: