Indexed by:
Abstract:
The cracking moment and deflection of prefabricated bridge deck panels (PBDPs) with connections are the critical indexes to assess their crack resistance and reliability. This paper presented improved prediction models for estimating the flexural performance, especially cracking moment and deflection, of PBDPs connected with CFRP tendons and UHPC grout. Afterwards, comparisons between experimental data and predicted cracking moment, moment capacity, and moment-deflection curves showed desired agreement. In addition, a finite element (FE) model was established and its reliability was verified by the comparison of moment-deflection curves between the FE model, predicted results, and tests. A parametric study was conducted to evaluate the influence of design parameters on flexural performance. The results show that the existing equations in the literature for calculating the effective moment of inertia cannot accurately predict that of PBDPs with novel connections. The improved performance prediction models have reasonable accuracy for flexural performance, including cracking moments, flexural capacity, and moment-deflection responses. The diameter and initial stress of CFRP, as well as concrete strength, have a positive influence on the performance of PBDPs connected with the proposed connections under bending moment.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
ENGINEERING STRUCTURES
ISSN: 0141-0296
Year: 2023
Volume: 285
5 . 6
JCR@2023
5 . 6 0 0
JCR@2023
ESI Discipline: ENGINEERING;
ESI HC Threshold:35
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 3
SCOPUS Cited Count: 4
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: