Abstract:
为了从Sentinel-2A影像中快速、准确提取竹林分布信息,以福建省永安市上坪乡竹林为研究区开展竹林提取研究.在影像分割的基础上,提取原始波段光谱、红边光谱指数、纹理3类共18个特征变量,利用随机森林Gini系数法进行特征变量重要性排序,设计5种不同特征变量组合方案,采用随机森林分类进行竹林分布信息提取.结果表明:原始波段光谱特征在Sentinel-2A影像竹林信息提取中具有重要作用,红边光谱指数特征次之,纹理特征未发挥显著作用.在红边光谱指数特征中,基于红边综合效应指数(MVIred1)构建的红边竹林指数3(BImvired1)具有良好的分类性能;利用随机森林Gini指标结合OOB泛化误差法有效减少了噪声数据的影响,筛选出最有利于竹林提取的特征变量子集,基于该特征子集的竹林分类总体精度(0A)达到94.58%、Kappa系数0.91、生产者精度(PA)为95.09%、用户精度(UA)85.54%.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
海南大学学报(自然科学版)
ISSN: 1004-1729
CN: 46-1013/N
Year: 2022
Issue: 4
Volume: 40
Page: 373-381
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 9
Affiliated Colleges: