Indexed by:
Abstract:
Integrating high flame retardancy and excellent electromagnetic interference (EMI) shielding into polymetric materials is extremely necessary, and well dispersing conductive fillers into polymeric materials is still a great challenge because of incompatible interfacial polarity between polymer matrix and conductive fillers. Therefore, under the premise of maintaining integral conductive films in the process of hot compression, constructing a novel EMI shielding polymer nanocomposites where conductive films closely adhere to polymer nanocmposites layers should be a fascinating stratety. In this work, salicylaldehyde-modified chitosan decorated titanium carbide nanohybrid (Ti3C2Tx-SCS) was combined with piperazine-modified ammonium polyphosphate (PA-APP) to fabricate thermoplastic polyurethane (TPU) nanocomposites, which were used for construction of hierarchical nanocomposite films by inserting reduced graphene oxide (rGO) films into TPU/PA-APP/Ti3C2Tx-SCS nanocomposite layers through our self-developed air assisted hot pressing technique. The total heat release, total smoke release and total carbon monoxide yield for TPU nanocomposite containing 4.0 wt% Ti3C2Tx-SCS nanohybrid were 58.0%, 58.4% and 75.8% lower than those of pristine TPU, respectively. Besides, the hierarchical TPU nanocomposite film containing 1.0 wt% Ti3C2Tx-SCS presented an averaged EMI shielding effectiveness of 21.3 dB in X band. This work provides a promising strategy for fabricating fire safe and EMI shielding polymer nanocomposites.@2023 Elsevier Inc. All rights reserved.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
JOURNAL OF COLLOID AND INTERFACE SCIENCE
ISSN: 0021-9797
Year: 2023
Volume: 640
Page: 179-191
9 . 4
JCR@2023
9 . 4 0 0
JCR@2023
ESI Discipline: CHEMISTRY;
ESI HC Threshold:39
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 23
SCOPUS Cited Count: 24
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0