Indexed by:
Abstract:
Transformation of carbon dioxide to useful fuels or chemicals is desirable to build up a sustainable society. In this study, we demonstrate that Cu2S has great potential for electrochemical CO2 reduction. They enable the selective CO2 reduction to formate starting at a low overpotential (∼ 120 mV), with high current density (over -20 mA/cm2 at -0.89 VRHE), and good Faradaic efficiency (>75%) over a broad potential window (-0.7 VRHE to -0.9 VRHE). X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and in-situ Raman spectroscopy studies reveal that Cu2S catalysts are electrochemically stable under the reaction conditions. Further-more, Cu2S catalysts show excellent durability without deactivation following more than 15 cycles (1.0 h per cycle) of operation. © 2022 The Author(s)
Keyword:
Reprint 's Address:
Email:
Source :
Chemical Engineering Journal Advances
ISSN: 2666-8211
Year: 2022
Volume: 12
5 . 5 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count: 2
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 6
Affiliated Colleges: