Indexed by:
Abstract:
It is critical to design and synthesize superior metal-free PMS catalysts, particularly to optimize the interaction between non-metallic heteroatoms and biochar, facilitating electron conduction and the generation of reactive oxygen species. Hence, this work presented a feasible synthetic strategy for anchoring phosphorus on in-situ nitrogen-doped biochar via ball milling at room temperature. Mechanical forces triggered the dehydration reaction between phosphoric acid and C-OH bonds, forming C-O-P bonds. In particular, the obtained N and P codoped biochar (NPB) showed excellent catalytic activity. The reaction and removal rate of diclofenac sodium (DS) in the NPB/PMS system were 0.3974 min(-1) and 90.08 % (only 10 min), respectively, significantly higher than those in the in-situ nitrogen-doped biochar/PMS system. The impressive catalytic efficiency was attributed to the coupling effect of high-efficiency adsorption and exceptional electron transfer capabilities. Anchoring P into the carbon structure effectively expedited the electron transfer from adsorbed DS molecules to metastable PMS complexes via the carbon-bridge effect, ultimately leading to DS degradation. The C=O groups, pyridinic N, graphitic N, and defect sites were possible active sites for PMS activation. GC/MS identified the potential degradation paths of DS, but the toxicity of DS and its intermediates was noteworthy. Furthermore, the DS degradation efficiency of the NPB/PMS system was little hampered by pH (2.95-9.07), anions, humic acid, and actual water, suggesting its application potential in real-world wastewater. Overall, this study paves a new way for constructing effective N and P co-doped non-metallic PMS catalysts, which may be expanded to other carbon materials to fulfil the unique demands of various applications.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
SEPARATION AND PURIFICATION TECHNOLOGY
ISSN: 1383-5866
Year: 2022
Volume: 301
8 . 6
JCR@2022
8 . 6 0 0
JCR@2022
ESI Discipline: CHEMISTRY;
ESI HC Threshold:53
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 20
SCOPUS Cited Count: 22
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1