Indexed by:
Abstract:
【目的】通过融合病患体征信息与用药数据,利用图神经网络技术进行药物精准推荐,以增强疾病诊疗过程中药物推荐的科学性与合理性。【方法】建立基于图神经网络(GNN)的“异常体征”与“药品”传递关系模型,设计了具有体征感知功能的药物精准推荐方案。构建“异常体征-病患-药品”异构图,采用关系图卷积神经网络(R-GCN)编码器学习具有体征感知的节点表示,通过设计基于体征感知交互的解码器,融合异常体征信息,实现对药物的精准推荐。【结果】以MIMIC-Ⅲ数据集中的三类疾病诊疗数据为对象开展实证研究。本文设计的药物推荐方案较SVD、NeuMF、NGCF模型在Recall@20指标上分别提高5.76、5.33、0...
Keyword:
Reprint 's Address:
Email:
Version:
Source :
数据分析与知识发现
ISSN: 2096-3467
CN: 10-1478/G2
Year: 2022
Issue: 09
Volume: 6
Page: 113-124
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 6
Affiliated Colleges: