Indexed by:
Abstract:
Photocatalysis offers a sustainable paradigm for solar-to-fuel conversion because it conflates the merits of renewable solar energy and reusable catalysts. However, the seek for robust photocatalysts that can utilize the full visible light spectrum remains challenging. Herein, cobalt quantum dots (Co QDs) were integrated into ultra-narrow bandgap dioxin linked covalent organic frameworks (COF-318) for photocat-alytic solar-to-fuel conversion under full spectrum of visible light irradiation. The optimal Co10-COF exhibited superior photocatalytic CO2 reduction performance, affording a CO yield of 4232 lmol center dot g(-1)center dot h(-1 )and H-2 evolution of 6611 lmol center dot g(-1)center dot h(-1). Specifically, Co QDs played a crucial role in boosting the photo -catalytic performance, which acted as electron collectors to capture the photoinduced electrons and then conveyed them to CO2 molecules. Moreover, the Co QDs modification significantly improved the CO2 adsorption and activation capacity, as well as prolonging the lifetime of photogenerated carriers. This work reveals an operable pathway for fabricating promising photocatalyst for visible-light-driven solar-to-fuel generation and provides insight into the impact of the integration of Co QDs on COF-based photocatalysts. (C) 2022 Elsevier Inc. All rights reserved.
Keyword:
Reprint 's Address:
Version:
Source :
JOURNAL OF COLLOID AND INTERFACE SCIENCE
ISSN: 0021-9797
Year: 2022
Volume: 628
Page: 573-582
9 . 9
JCR@2022
9 . 4 0 0
JCR@2023
ESI Discipline: CHEMISTRY;
ESI HC Threshold:74
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 23
SCOPUS Cited Count: 21
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0