Indexed by:
Abstract:
Electrocatalytic nitrogen reduction reaction (eNRR) is a new method for sustainable NH3 production, which has attracted much attention in recent years. However, the low Faradaic efficiency due to the competitive hydrogen evolution reaction (HER) and inert N equivalent to N triple bond activation hinders its practical application. To find highly efficient electrocatalysts with excellent activity, stability and selectivity, we have studied a series of transition metal dimers (TM2) loaded on poly triazine imide, (PTI) a crystalline carbon nitride, by density functional theory calculations. The results show that most of the metal dimers have good stability. Finally, among 26 homonuclear diatomic catalysts, Mo-2@PTI, Re-2@PTI, and Pt-2@PTI exhibit strong capability for suppressing HER, with a favorable limiting potential of -0.53, -0.36, and -0.63 V, respectively, and hence, can be used as efficient electrocatalysts for NRR. In this study, a homonuclear diatomic eNRR catalyst was designed and screened to provide not only a theoretical basis for the experiments but also an alternative approach for sustainable synthesis of ammonia.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
JOURNAL OF CHEMICAL PHYSICS
ISSN: 0021-9606
Year: 2022
Issue: 11
Volume: 157
4 . 4
JCR@2022
3 . 1 0 0
JCR@2023
ESI Discipline: CHEMISTRY;
ESI HC Threshold:74
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 5
SCOPUS Cited Count: 5
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: