Indexed by:
Abstract:
Electrocatalytic nitrogen reduction reaction (eNRR) is a new method for sustainable NH3 production, which has attracted much attention in recent years. However, the low Faradaic efficiency due to the competitive hydrogen evolution reaction (HER) and inert NN triple bond activation hinders its practical application. To find highly efficient electrocatalysts with excellent activity, stability and selectivity, we have studied a series of transition metal dimers (TM2) loaded on poly triazine imide, (PTI) a crystalline carbon nitride, by density functional theory calculations. The results show that most of the metal dimers have good stability. Finally, among 26 homonuclear diatomic catalysts, Mo2@PTI, Re2@PTI, and Pt2@PTI exhibit strong capability for suppressing HER, with a favorable limiting potential of -0.53, -0.36, and -0.63 V, respectively, and hence, can be used as efficient electrocatalysts for NRR. In this study, a homonuclear diatomic eNRR catalyst was designed and screened to provide not only a theoretical basis for the experiments but also an alternative approach for sustainable synthesis of ammonia. © 2022 Author(s).
Keyword:
Reprint 's Address:
Email:
Source :
Journal of Chemical Physics
ISSN: 0021-9606
Year: 2022
Issue: 11
Volume: 157
4 . 4
JCR@2022
3 . 1 0 0
JCR@2023
ESI HC Threshold:74
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 5
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: